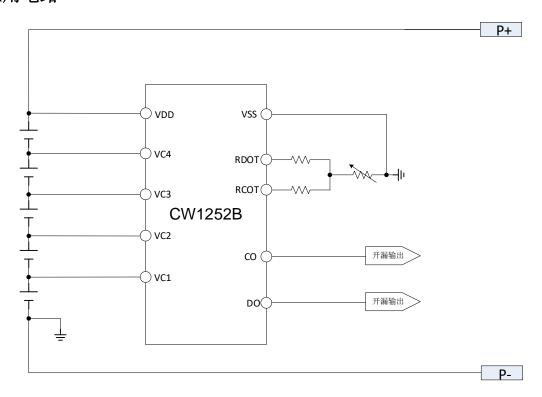
www.cellwise-semi.com CW1252B-DS V1.0

CW1252B

5 节电池保护 IC

功能特性

- 过充电保护
 - 阈值范围 2.8V、3.65V~3.95V、4.175V~4.350V, 25mV 步进, ±25mV 精度
- 过放电保护
 - 阈值范围 1.2V、2.100V~3.000V,100mV 步进, ±30mV 精度
- 充放电过温保护, 充电低温保护
- 断线保护功能
- 低电压禁止充电功能
- 低功耗设计
 - 工作状态 8μA (25°C)
 - 休眠状态 5μA (25°C)
- 封装形式: MSOP10


应用领域

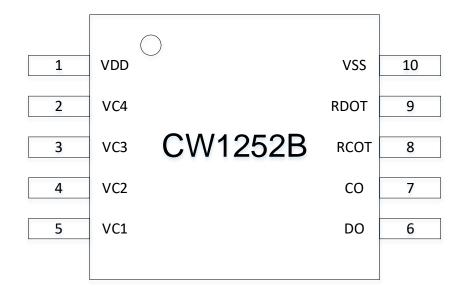
- 电动工具
- 电动自行车
- 后备电源
- 锂离子及锂聚合物电池包

基本描述

CW1252B 系列产品是一款高度集成的 5 串锂离子电池或锂聚合物电池保护芯片。CW1252B 为电池包提供过充、过放和过温保护。

典型应用电路

产品选择指南



产品目录

	产品型号	过充阈值	过充延时	过充回复	过放阈值	过放延时	过放解除
)加坐与	[V _{oc}]	[Toc]	[Vocr]	[V _{OD}]	[T _{OD}]	[V _{ODR}]
	CW1252BLAM	4.225V	1s	4.075V	2.700V	1s	3.000V
Ī	CW1252BTAM	4.225V	1s	4.075V	2.700V	1s	3.000V
Ī	CW1252BTBM	4.200V	1s	4.100V	2.700V	1s	3.000V

产品型号	充电低温保护	低电压禁止充电电压 [V _{LV}]
CW1252BLAM	不支持	1.000V
CW1252BTAM	支持	1.000V
CW1252BTBM	支持	1.000V

引脚排列图

编号	名称	引脚描述
1	VDD	芯片电源,连接电池组最高电位;若5串电池,则为电池5正端
2	VC4	电池 4 正极连接端子
3	VC3	电池 3 正极连接端子
4	VC2	电池 2 正极连接端子
5	VC1	电池 1 正极连接端子
6	DO	放电保护输出端子
7	СО	充电保护输出端子
8	RCOT	充电温度检测电阻连接端子
9	RDOT	放电温度检测电阻连接端子
10	VSS	芯片接地端子,连接电池 1 负极

绝对最大额定值

		范	A C	
		最小值	最大值	単位
引脚输入电压	VC1, VC2, VC3,VC4,VDD,CO,DO	VSS-0.3	VSS+42	V
引脚输入电压	RCOT, RDOT,	VSS-0.3	6	V
工作温度	T1	-40	85	°C
存储温度	T2	-40	125	°C

注意: 绝对最大额定值是指无论在任何条件下都不能超过的额定值。如果超过此额定值,有可能造成产品 损伤。

ESD 等级

			参数值	单位
\	热 由 社 由	HBM 模式	±4000	V
V _(ESD) 等级 静电放电		CDM 模式	±1000	V

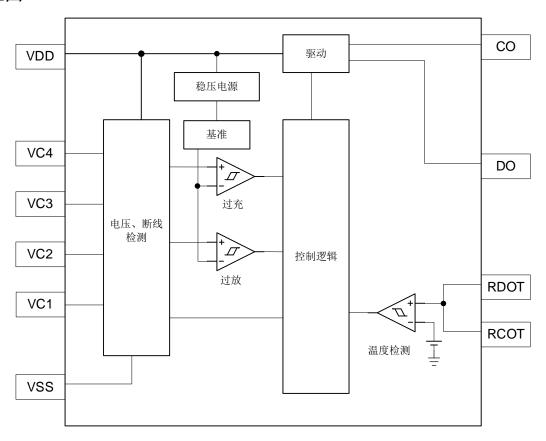
额定工作电压

描述	项目	最小值	典型值	最大值	单位
VDD 输入电压	V_{DD}	4		25	V
VCELL 输入电压	V _{CELL}	0		5	V
引脚输入电压	V_{RCOT}, V_{RDOT}	0		5	V

电气特性

除特殊说明外 T=25℃

描述	项目	测试条件	最小值	典型值	最大值	单位
电源						
正常工作电流	I _{OPR}	VC1=VC2=VC3=VC4=VC5=3.7V		8	12	μΑ
休眠电流	ISLEEP	VC1=VC2=VC3=VC4=VC5=2.0V		5	8	μΑ
电压、温度检测和保护阈位	<u></u> 宜					
_ _	., ., .,1	VC1=VC2=VC3=VC4=3.7V	Voc -	.,	Voc+	
过充检测电压	Voc*1	VC5=3.7→4.5V	0.025	Voc	0.025	V
· 十一大 4月17人 - 11 T		VC1=VC2=VC3=VC4=3.7V	Vocr -	1/	Vocr +	V
过充解除电压	V _{OCR}	VC5=4.5→3.7V	0.050	V _{OCR}	0.050	
	.,	VC1=VC2=VC3=VC4=3.7V	V _{OD} -	.,	V _{OD} +	
过放检测电压	Vod	VC5=3.7→2.0V	0.050	Vod	0.050	V
	.,	VC1=VC2=VC3=VC4=3.7V	V _{ODR} -	.,,	Vodr +	
过放解除电压	Vodr	VC5=2.0→3.7V	0.100	Vodr	0.100	V
加中工	V	VC1=VC2=VC3=VC4=3.7V	V _{LV} -		V _{LV} +	V
低电压检测电压	V_{LV}	VC5=3.7→0V	0.100	V_{LV}	0.100	
充电过温检测温度	T _{COT} *2	V _{DD} =18V	Тсот -3	Тсот	T _{COT} +3	°C
充电过温保护解除迟滞温度	T _{COTR}			5		°C
放电过温检测温度	T _{DOT} *2	V _{DD} =18V	T _{DOT} -3	Трот	T _{DOT} +3	°C
放电过温保护解除迟滞温度	T _{DOTR}			5		°C
充电低温检测温度	Тсит	V _{DD} =18V	Тсот -3	Тсот	Тсот +3	°C
充电低温保护解除迟滞温度	Tcutr			3		°C
延迟时间						
VIII-de III Ide verse I		VC1=VC2=VC3=VC4=3.7V	0.8* toc		4.0*+	
过充保护延时	toc	VC5=3.7→4.5V	0.8 100	toc	1.2* toc	S
过充保护重置延时	treset		20	30	40	ms
`+->- /[] +-\- \&\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		VC1=VC2=VC3=VC4=3.7V	50	00	400	
过充保护解除延时	tocr	VC5=4.5→3.7V	50	80	120	ms
过放保护延时	4	VC1=VC2=VC3=VC4=3.7V	0.8* t _{OD}	_	4.0*+	
以 放体扩延的	t _{OD}	VC5=3.7→2.0V	U.O LOD	T _{OD}	1.2* t _{OD}	S
计节但护规队 还时	4	VC1=VC2=VC3=VC4=3.7V	50	90	100	
过放保护解除延时	todr	VC5=2.0→3.7V	50	80	120	ms
休眠延时	tslp	VC1=VC2=VC3=VC4=VC5=2.0V	20	30	40	S
充电过温保护延时	tсот	V _{DD} =18V	0.5	1	1.5	s
充电过温保护解除延时	tcotr		0.5	1	1.5	s
放电过温保护延时	t _{DOT}	V _{DD} =18V	0.5	1	1.5	S
放电过温保护解除延时	tdotr		0.5	1	1.5	S
充电低温保护延时	tсит	V _{DD} =18V	0.5	1	1.5	s
充电低温保护解除延时	t _{CUTR}		0.5	1	1.5	s
by FF _L NI_ LA VIII 1		VC1=VC2=VC3=VC4=3.7V		_		
低压电池检测延时	t _{LV}	VC5=3.7→0V	0.8	1	1.2	S


描述	项目	测试条件	最小值	典型值	最大值	单位
低压电池检测解除延时	t _{LVR}			80		ms
断线检测延时	tow	输入电容=0.1μF	8			S
断线回复延时	tow			80		ms
引脚输出电压	引脚输出电压					
CO 逻辑低电平输出电压	CO*3			Vss		V
DO 逻辑低电平输出电压	DO*3			Vss		V
引脚驱动能力						
CO 端子输出电阻	СО	CO 端子逻辑高电平		HiZ		
CO 编丁制出电阻	CO	CO 端子逻辑低电平		10		kΩ
DO 建乙炔山中阳	DO	DO 端子逻辑高电平		HiZ		
DO 端子输出电阻	00	DO 端子逻辑低电平		10		kΩ

^{*1} 详细保护阈值选择,请参阅选择指南表

^{*2} 温度保护阈值取决于不同电阻网络的设定

^{*3} CO、DO 端子的输出高电平为高阻态

原理框图

功能描述

正常状态

所有电池电压处于过充检测电压 (V_{OC}) 和过放检测电压 (V_{OD}) 之间, CW1252B 处于正常工作状态。

过充电状态

正常状态下,任意一节电池电压高于过充检测电压(V_{OC}),且超过过充保护延迟时间(t_{OC}),CO端子输出高阻态关断充电MOSFET,CW1252B进入过充保护状态。

过充保护延时时间(t_{oc})内,若所检测电池电压低于过充检测电压(V_{oc})的时间超过过充重置延时(t_{RESET}),则过充累积的延迟时间(t_{oc})重置。否则,电池电压的下降则认为是无关的干扰从而被屏蔽。过充电保护解除条件:

所有电池电压低于过充解除电压(VocR)且超过过充解除延迟时间(tocR)。

过放电状态

正常状态下,任意一节电池电压低于过放保护电压(V_{OD}),且超过过放保护延迟时间(t_{OD}),DO 端子输出高阻态关断放电 MOSFET,CW1252B 进入过放保护状态。

过放电保护解除条件:

所有电池电压高于过放解除电压(V_{ODR})且维持超过过放解除延时(t_{ODR})。

低功耗状态

CW1252B 进入过放保护状态,并超过休眠延时时间(t_{SLP}),则 CW1252B 会进入低功耗状态。DO 端子保持高阻状态,维持放电 MOSFET 关闭;CO 端子保持低电平状态,维持充电 MOSFET 开启。

休眠状态解除条件:

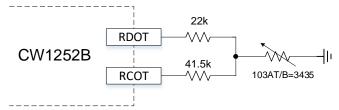
电池电压高于过放解除电压(VodR)且维持超过过放解除延时(todR)。

温度保护

NTC 电阻的阻值会随着温度的变化而变化,若 RCOT(或 RDOT)端子检测到的电压达到内部比较阈值,且维持 tcor(或 tpor)时间,充电(或放电)过温保护触发。

充电过温保护后,充电 MOSFET 关断,放电 MOSFET 打开;放电过温保护后,放电 MOSFET 关断。当温度下降,幅值超过充电(或放电)过温解除迟滞温度 T_{COTR} (或 T_{DOTR}),且时间达到充电(或放电)过温解除延时 t_{CORT} (或 t_{DOTR})后,过温保护解除。

过温阈值设置步骤:


- 1. 选择 NTC 电阻;
- 2. 确定充电过温保护阈值,如:50°C;
- 3. 根据 NTC 电阻的曲线图,找到 50°C 对应的电阻值,如 4.15kΩ;
- 4. 使用 10 倍阻值的正常电阻连接至 RCOT 端子,即 41.5kΩ;
- 5. 放电过温保护设置使用相同的方法,但电阻需连接至 RDOT 端子;
- 6. 详细电路请参考应用电路,通过选择电阻来设定合适的保护温度;

CW1252B 使用一个 NTC 来达到不同的充电过温和放电过温阈值设定

CW1252B 可选充电低温保护,通过不同产品型号选择带充电低温保护功能的产品,NTC 电阻建议选择 103AT, B 值=3435。

带充电低温保护功能产品,提供 NTC 开路保护,即当 NTC 电阻开路时,电池包不能充电也不能放电。

充电低温默认的外围配置电阻以及参考电路如下:

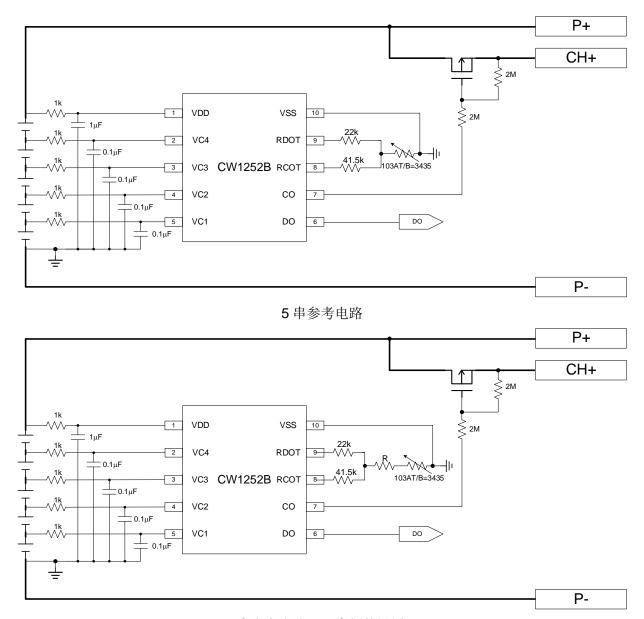
对应的温度保护值:

充电高温保护温度	放电高温保护温度	充电低温保护温度
50℃	70℃	0℃

当需要其他温度保护值,外围电阻需要额外配置,设置方式请咨询赛微 FAE 获得更多支持。

断线保护

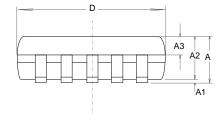
CW1252B 包含断线检测和保护功能。正常状态下,电池包中任意一节电池的检测线断开,且维持超过断线检测延时(tow),DO 端子输出低电平关断放电 MOSFET,CO 端子输出高阻态,关断充电 MOSFET,CW1252B 进入断线保护状态。

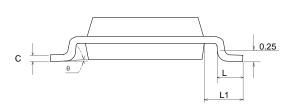

检测线重新连接,并维持超过断线回复延时(town),断线保护状态解除。

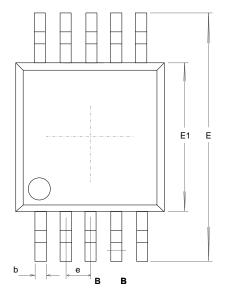
低电压禁止充电功能

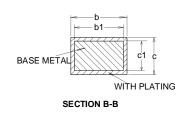
CW1252B 可选低电压禁止充电功能;

CW1252B 检测到任意电池电压<低电压禁止充电电压(V_{LV}), CO 输出低电平,关断充电 MOS。


参考设计电路




5 串参考电路(温度额外设置)


封装图和封装尺寸

MSOP10 Package

SYMBOL	N	/ILLIMETE	3		
STIVIBUL	MIN	NOM	MAX		
Α			1.10		
A1	0.05		0.15		
A2	0.75	0.85	0.95		
А3	0.30	0.35	0.40		
b	0.18		0.26		
b1	0.17	0.20	0.23		
С	0.15		0.19		
c1	0.14	0.15	0.16		
D	2.90	3.00	3.10		
Е	4.70	4.90	5.10		
E1	2.90	3.00	3.10		
е	0.50BSC				
L	0.40		0.70		
L1		0.95REF			
θ	0		8°		

Ce∥Wise

版本履历

日期	版本	修改项目
2020-09-06	1.0	V1.0 说明书发布

声明

赛微微电子公司为提高产品的可靠性、功能或设计,保留对其做出变动的权利,恕不另行通知。对于本文描述的任何产品和电路应用中出现的问题,赛微微电子公司不承担任何责任;不转让其专利权下的任何许可证,也不转让其他权利。

若无赛微微电子公司总裁正式的书面授权,其产品不可作为生命支持设备或系统中的关键器件。

具体如下:

- 1. 生命支持器件或系统是指如下的设备或系统: (a)用于外科植入人体,或(b)支持或维持生命,以及即使依照标示中的使用说明进行正确操作,但若操作失败,仍将对使用者造成严重的伤害。
- 2. 关键器件是指生命支持设备或系统中,由 于该器件的失效会导致整个生命支持设备 或系统的失效,或是影响其安全性及使用 效果。